Le moteur OM626 4 cylindres 1.6L (Page 1) / Moteur VP / Forum-mercedes.com

Forum-mercedes.com

Le forum 100% non officiel et indépendant des passionnés Mercedes-Benz

Vous n'êtes pas identifié(e).     

Annonce

#1 06-06-2016 21:22:31

Actr0s
Rédacteur
Inscription : 12-02-2012
Messages : 4 272

Le moteur OM626 4 cylindres 1.6L

Présentation de la nouvelle génération de moteurs en ligne 4 cylindres OM626 (Renault R9M 1.6 dCi)

om626.jpg

Vue d'ensemble

Description abrégée

Le moteur OM626 D16 SCR est un tout nouveau moteur Mercedes diesel 4 cylindres en ligne avec injection directe common rail et turbocompresseur. Le moteur est disponible en deux niveaux de puissance (85 et 100 kW), avec chacun 1,6 litre de cylindrée. Ce moteur est issu du partenariat entre Daimler et Renault/Nissan. C'est l'équivalent du moteur Renault R9M 1.6 dCi, avec des modifications permettant de répondre au cahier des charges Mercedes-Benz. Ce moteur a tout d'abord équipé la Classe C W205 à partir de septembre 2014, puis d'autres modèles de la gamme. Ces moteurs sont produits en France, sur le site de Cléon (Seine maritime).

Aperçu des caractéristiques essentielles du moteur OM626 :
•    Volant moteur bi-masse spécial
•    Pompe à huile variable
•    Deux soupapes d'admission et d'échappement par cylindre
•    Entraînement d'arbre à cames par chaîne de distribution
•    Turbocompresseur avec turbine à géométrie variable (VTG)
•    Recyclage des gaz d'échappement à deux niveaux, refroidi par eau
•    Gestion thermique optimisée
•    Fonction Start/Stop ECO
•    Dépollution des gaz d'échappement par l'injection d'urée (AdBlue®) dans la ligne d'échappement

4-cylindres.jpg

Caractéristiques du moteur sur Classe C W205

caracteristiques-moteur_20160606-1423.png

courbe-1.png

courbe-2.png

Vues du moteur

vue-de-dessus.png

Vue de dessus du moteur

B2/5  Débitmètre d'air massique à film chaud
B6/1  Capteur Hall arbre à cames
B28/11  Capteur de pression après filtre à air
R39/1  Élément chauffant conduite de purge
Y88  Convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement


vue-de-gauche.jpg

Vue de gauche du moteur

B4/32  Capteur de pression et de température air de suralimentation
B11/4  Capteur de température du liquide de refroidissement
G2  Alternateur
M1  Démarreur
M16/6  Actionneur de papillon des gaz
M55  Servomoteur coupure du canal d'admission
S43/1  Manocontacteur d'huile


vue-de-droite.jpg

Vue de droite du moteur

B16/14  Capteur de température recyclage des gaz d'échappement basse pression
B19/7  Capteur de température avant catalyseur
B19/9  Capteur de température avant filtre à particules diesel
B19/11  Capteur de température avant turbocompresseur
B28/8  Capteur de pression différentielle filtre à particules diesel
B60 Capteur de pression des gaz d'échappement
G3/2  Sonde lambda avant catalyseur
Y27/7  Actionneur de recyclage des gaz basse pression
Y31/5  Convertisseur de pression régulation de pression de suralimentation


vue-arriere_20160606-1536.jpg

Vue arrière du moteur

B4/7  Capteur de pression du carburant
B16/10  Capteur de température recyclage des gaz d'échappement haute pression
B70  Capteur Hall vilebrequin
Y27/8  Actionneur de recyclage des gaz haute pression


vue-dessous.jpg

Vue de dessous du moteur

S43  Contacteur de contrôle du niveau d'huile


Partie mécanique

Carter moteur

Le moteur OM626 est doté d'un carter moteur en fonte grise.
Les trous de ventilation entre les cylindres sont incorporés dans la fonte. Grâce à plusieurs renforts transversaux et longitudinaux, il dispose d'une très grande rigidité.

carter-moteur.jpg

Carter moteur

1  Bloc-cylindres
2  Chapeau de palier de vilebrequin
3  Vis chapeau de palier de vilebrequin

Carter d'huile moteur

Carter d'huile moteur

Le carter d'huile moteur en deux parties est réalisé dans un alliage d'aluminium. Le nervurage du carter d'huile est étudié de façon à réduire le rayonnement sonore et à garantir la résistance requise pour le vissage des organes auxiliaires.

Contacteur témoin du niveau d'huile

Les niveaux d'huile moteur à l'intérieur du contacteur témoin de niveau d'huile et du carter d'huile moteur s'équilibrent par l'intermédiaire d'un trou d'arrivée et d'un orifice d'écoulement. Le flotteur est dévié en fonction du niveau d'huile. Le contact reed est ouvert lorsque le niveau d'huile moteur est inférieur à "Min" et est fermé par le champ magnétique des aimants annulaires lorsque le niveau d'huile moteur est supérieur à "Min".


carter-d-huile.jpg

Carter d'huile moteur

1  Carter d'huile moteur
S43  Contacteur de contrôle du niveau d'huile


Embiellage

Embiellage – généralités

L'embiellage réalise un rapport course/alésage pratiquement carré. Ce rapport permet un grand diamètre de soupape et en conséquence un bon remplissage de la chambre de combustion.

Piston

Les pistons en acier utilisés sont dotés de segments racleurs spéciaux. Ces segments racleurs présente une forme en u et sont par conséquent très flexibles. Cette flexibilité permet aux segments de s'adapter aux distorsions de la surface du cylindre, générées sous l'influence de la température et de la pression. Les frottements sont alors réduits et le besoin énergétique diminué.

embiellage_20160606-1543.jpg

Embiellage

1  Piston
2  Contrepoids
3  Vilebrequin
4  Poulie vilebrequin

Culasse

La culasse est réalisé en alliage d'aluminium. Deux arbre à cames en tête actionnent deux soupapes d'admission et deux soupapes d'échappement par cylindre.
La culasse se distingue par une double chemise humide. Cette chemise humide permet un refroidissement constant des zones thermiquement sollicitées.


culasse_20160606-1545.jpg

Entraînement par courroie

Via la transmission par courroie, la poulie du vilebrequin entraîne la pompe à liquide de refroidissement, l'alternateur et le compresseur frigorifique.
L'entraînement est assuré par une courroie trapézoïdale à nervures à 7 gorges, qui est tendue par un tendeur de courroie automatique.

courroie_20160606-1547.jpg

Entraînement par courroie

1  Poulie vilebrequin
2  Pompe à liquide de refroidissement
3  Poulie de renvoi
4  Tendeur de courroie
A9  Compresseur frigorifique
G2  Alternateur

Entraînement par chaîne

Le vilebrequin entraîne le pignon de l'arbre à cames d'échappement par une chaîne à douilles. Un autre pignon, qui entraîne l'arbre à cames d'admission, est monté sur l'arbre à cames d'échappement. Une chaîne à rouleaux entraîne par ailleurs la pompe à huile moteur.
L'entraînement par chaîne est constitué de la chaîne à douilles sans entretien, de la chaîne à rouleaux sans entretien, d'une glissière et d'un guide-tendeur. Un tendeur de chaîne hydraulique tend la chaîne à douilles sur la guide-tendeur.

chaine.jpg

Entraînement par chaîne

1  Pignon de chaîne à douilles arbre à cames d'échappement
2  Pignon arbre à cames d'admission
3  Tendeur de chaîne hydraulique
4  Chaîne à douilles arbre à cames
5  Glissière chaîne à dents arbre à cames
6  Pignon de chaîne vilebrequin
7  Chaîne à rouleaux pompe à huile moteur
8  Pompe à huile moteur
9  Guide-tendeur

Distribution

Les soupapes sont actionnées par les arbres à cames au moyen de culbuteurs à rouleau et de poussoirs hydrauliques.
L'arbre à cames d'échappement est entraîné par le vilebrequin au moyen d'une chaîne à douilles. L'arbre à cames d'échappement entraîne l'arbre à cames d'admission par les pignons en prise des deux arbres à cames.

distribution.jpg

Distribution

1  Arbre à cames d'admission
2  Arbre à cames d'échappement
3  Soupapes d'admission
4  Soupapes d'échappement
5  Poussoirs hydrauliques

Combustion

Préchauffage

Système de préchauffage

Le système de préchauffage est constitué des composants suivants :
•    Calculateur CDI
•    Étage final de préchauffage
•    Bougies de préchauffage

Les bougie de préchauffage sont commandées par le calculateur CDI au moyen d'un étage final de préchauffage, en fonction d'un signal modulé en largeur d'impulsion. L'étage final de préchauffage envoie des données de diagnostic directement au calculateur CDI.

Étage final de préchauffage

L'étage final de préchauffage est piloté directement par le calculateur CDI au moyen d'un signal par impulsions modulées en largeur. Le pilotage des bougies de préchauffage varie selon la puissance de préchauffage demandée.

Bougies de préchauffage

Les bougies de préchauffage sont pilotées directement par l'étage final de préchauffage. Selon le pilotage, les bougies de préchauffage peuvent atteindre une température d'environ 1000 °C.

prechauffage.jpg

Représentation schématique du système de préchauffage

1  Étage final de préchauffage, diagnostic
2  Étage final de préchauffage, commande
3  Bougies de préchauffage, commande
N3/9  Calculateur CDI
N14/3  Étage final de préchauffage
R9  Bougies de préchauffage

Coupure du canal d'admission

La coupure du canal d'admission (EKAS) permet d'obtenir une rotation de l'air d'admission dans la chambre de combustion. Cette rotation améliore la formation du mélange et l'efficience de la combustion. Le servomoteur de coupure du canal d'admission est ouvert ou fermé par le calculateur CDI en fonction d'une cartographie.

Deux canaux d'admission séparés, la canal de remplissage et le canal de turbulence, sont prévus dans le collecteur d'admission pour chaque cylindre. Le canal de remplissage peut être fermé par un volet à l'intérieur du servomoteur de coupure du canal d'admission. En conséquence, seuls les canaux de turbulence restent disponibles pour le remplissage des cylindres, ce qui augmente la vitesse d'écoulement et le tourbillonnement de l'air.

turbulence.jpg

Représentation schématique de la commande de turbulence variable

1  Canal de remplissage
2  Canal de turbulence
3  Canaux d'admission
4  Canaux d'échappement
M16/6  Actionneur de papillon des gaz
M55  Servomoteur coupure du canal d'admission
A  Air d'admission canal de remplissage
B  Air d'admission canal de turbulence

Coupure du canal d'admission

Servomoteur de coupure du canal d'admission

Le servomoteur de coupure du canal d'admission est monté directement sur l'actionneur de papillon des gaz. Il est piloté par le calculateur CDI à l'aide d'un signal par impulsions modulées en largeur.

coupure-du-canal-d-admission.jpg

Coupure du canal d'admission

1  Canal de turbulence
2  Canal de remplissage
3  Volet d'inversion coupure du canal d'admission
M16/6  Actionneur de papillon des gaz
M55  Servomoteur coupure du canal d'admission


Suralimentation

Turbocompresseur

Le turbocompresseur utilisé est doté d'une turbine à géométrie variable. Les aubes directrices présente une forme design en S favorisant l'écoulement. Cette structure compacte génère de faibles pertes de chaleur et d'écoulement, ce qui procure un degré de suralimentation important.

Le turbocompresseur est constitué essentiellement de trois ensembles :
•    Roue de turbine
•    Compresseur
•    Logement de palier

Dans le compresseur, l'air filtré est aspiré et accéléré par la rotation de la roue de compresseur. Dans la spirale du carter de la roue de compresseur, la vitesse de l'air est ralentie, ce qui accroît la pression. L'entraînement est assuré par l'arbre du compresseur, sur lequel sont montées la roue de compresseur et la roue de turbine. La roue de turbine est entraînée par les gaz d'échappement qui entrent dans le carter de la roue de turbine. Les gaz d'échappement sont alors détendus d'un niveau de pression élevé à un niveau de pression plus faible.

L'énergie convertie, à savoir la puissance d'entraînement de la turbine et donc le travail et le régime du compresseur, peut être régulée par le réglage des aubes directrices réglables.
Pour augmenter la pression de suralimentation, les aubes directrices sont "fermées", ce qui veut dire que la section de passage entre les aubes directrices est réduite. La pression augmente alors en amont de la roue de turbine et une plus grande énergie des gaz d'échappement est mis en œuvre.

Pour diminuer la pression de suralimentation, les aubes directrices sont "ouvertes", ce qui veut dire que la section de passage entre les aubes directrices est augmentée. La pression diminue alors en amont de la roue de turbine et une plus faible énergie des gaz d'échappement est mis en œuvre.

Suralimentation – généralités

Du fait de la suralimentation, le taux de remplissage des cylindres est amélioré, ce qui a pour conséquence d'augmenter le couple moteur et la puissance du moteur.

Régulation de la pression de suralimentation

La régulation de la pression de suralimentation est réalisée par méthode électropneumatique au moyen d'une capsule à dépression, qui est pilotée par un convertisseur de pression électropneumatique. Ce convertisseur de pression est commandé par le calculateur CDI en fonction d'une cartographie.

Dans ce but, le calculateur CDI analyse les signaux des capteurs suivants :

•    Capteur de température du liquide de refroidissement
•    Transmetteur de pression et de température d'air de suralimentation
•    Capteur de pression des gaz d'échappement
•    Débitmètre massique d'air à film chaud
•    Capteur Hall de vilebrequin
•    Capteur de pression atmosphérique (intégré dans le calculateur CDI)

La température et la pression des gaz d'échappement sont surveillées en permanence pour protéger le turbocompresseur des surcharges. S'il existe un risque de surcharge thermique ou mécanique, la pression de suralimentation est réduite par le calculateur CDI.

suralimentation.png

Schéma fonctionnel de la suralimentation

B2/5  Débitmètre d'air massique à film chaud
B4/32  Capteur de pression et de température air de suralimentation
B11/4  Capteur de température du liquide de refroidissement
B19/11  Capteur de température avant turbocompresseur
B28/11  Capteur de pression après filtre à air
B60  Capteur de pression des gaz d'échappement
B70  Capteur Hall de vilebrequin
N3/9  Calculateur CDI
Y31/5  Convertisseur de pression régulation de pression de suralimentation
Y76  Injecteurs de carburant
1  Capteur de température avant turbocompresseur, signal
2  Injecteurs de carburant, commande
3  Capteur de température du liquide de refroidissement, signal
4  Régime moteur, signal
5  Capteur de pression après filtre à air, signal
6  Capteur de pression et de température air de suralimentation, signal
7  Capteur de pression des gaz d'échappement, signal
8  Convertisseur de pression régulation de la pression de suralimentation, commande
9  Débitmètre massique d'air à film chaud, signal

Préchauffage du carburant

Préchauffage du carburant – généralités

Pour garantir la fluidité du carburant aux basses températures extérieures, un élément chauffant est monté sur le filtre à carburant. L'élément chauffant du filtre à carburant est piloté directement par le calculateur CDI.

filtre-a-carburant.jpg

Filtre à carburant avec élément chauffant

B50  Capteur de température de carburant R54/1  Élément chauffant filtre à carburant


Alimentation en carburant

circuit-de-carburant.jpg

Circuit de carburant – représentation schématique

19  Pompe à carburant haute pression
B4/6  Capteur de pression de carburant haute pression
B4/7  Capteur de pression du carburant
B50  Capteur de température de carburant
M3  Pompe à carburant
R54/1  Élément chauffant filtre à carburant
Y76  Injecteurs de carburant
Y94  Vanne de régulation de débit
A  Carburant non dépollué
B  Carburant chauffé, nettoyé
C  Carburant comprimé (haute pression)
D  Retour du carburant

Alimentation en carburant – généralités

Dans toutes les conditions de service, l'alimentation en carburant fournit aux injecteurs du carburant filtré venant du réservoir de carburant en quantité suffisante et sous une pression adéquate.

reservoir-de-carburant.png

Réservoir de carburant

45  Tubulure de remplissage
75  Réservoir de carburant
88  Module d'alimentation en carburant
B4/1  Capteur de niveau réservoir de carburant indicateur de niveau de carburant, gauche
B4/2  Capteur de niveau réservoir de carburant indicateur de niveau de carburant, droit
M3  Pompe à carburant


Commande de la pompe à carburant

La pompe à carburant est pilotée par le calculateur pompe à carburant à l'aide d'un signal modulé en largeur d'impulsion.
Ce pilotage est réalisé quand une demande émanant du calculateur CDI arrive sur le CAN transmission jusqu'au calculateur pompe à carburant.

La pression de carburant est détectée par le capteur de pression de carburant. Le calculateur pompe à carburant compare la "pression théorique de carburant" à la "pression réelle de carburant" et active en conséquence la pompe à carburant. La pression est abaissée à 4 ou 5 bar en fonction du besoin du moteur.

Coupure de sécurité du carburant

Une coupure de sécurité de l'alimentation en carburant est réalisée de façon à garantir la sécurité routière et la sécurité des occupants. Le calculateur CDI active la coupure de sécurité du carburant dans les conditions suivantes :

•    Absence de signal de régime moteur
•    Présence d'un signal d'accident

Alimentation en carburant

La pompe à carburant aspire le carburant du pot de stabilisation à travers un filtre et le refoule à travers le filtre à carburant en direction de la pompe à carburant haute pression.

Circuit de carburant basse pression

Le circuit de carburant basse pression est constitué des composants suivants :
•    Réservoir de carburant
•    Pompe à carburant
•    Conduites de carburant
•    Filtre à carburant avec élément chauffant
•    Capteur de température de carburant
•    Capteur de pression de carburant

Système de carburant haute pression

Le système de carburant haute pression est constitué des composants suivants :

•    Pompe à carburant haute pression
•    Rail
•    Conduites haute pression
•    Capteur de pression de carburant haute pression
•    Injecteurs de carburant
•    Vanne de régulation de débit

Du rail, le carburant arrive via les conduites haute pression aux injecteurs de carburant. Les injecteurs de carburant injectent le carburant finement pulvérisé dans la chambre de combustion.

Le calculateur CDI calcule en fonction de la courbe caractéristique le débit d'injection cylindre par cylindre pour l'état de marche correspondant. Le débit d'injection dépend de la pression de carburant dans la rampe d'injection et de la durée de commande des injecteurs de carburant. La pression de carburant dans la rampe d'injection est commandée par la vanne de régulation de débit.

La pression de carburant effective dans la rampe d'injection est détectée par le capteur de pression de carburant haute pression et limitée par la vanne de régulation de débit à un maximum de 1600 bar. Ces deux informations sont enregistrées en permanence par le calculateur CDI.

carburant-haute-pression_20160606-1559.jpg

Système de carburant haute pression

19  Pompe à carburant haute pression
B4/6  Capteur de pression de carburant haute pression
Y76  Injecteurs de carburant
Y94  Vanne de régulation de débit

alimentation-en-carburant.png

Schéma fonctionnel de l'alimentation en carburant

B4/6  Capteur de pression de carburant haute pression
B4/7  Capteur de pression du carburant
B37  Capteur de pédale d'accélérateur
B50  Capteur de température de carburant
M3  Pompe à carburant
N3/9  Calculateur CDI
N118  Calculateur pompe à carburant
R54/1  Élément chauffant filtre à carburant
Y76  Injecteurs de carburant
Y94  Vanne de régulation de débit
CAN C1  CAN transmission

1  Injecteurs de carburant, commande
2  Capteur de pédale d'accélérateur, signal
3  Vanne de régulation de débit, commande
4  Température de carburant, signal
5  Élément chauffant filtre à carburant, commande
6  Pression de carburant, signal
7  Pression de carburant, signal
8  Pompe à carburant, demande pression théorique

Régulation d'injection

Sur le moteur OM626, la gestion moteur électronique CR41 de Bosch est utilisée pour gérer le système d'injection common rail. La gestion moteur calcule la durée d'injection et la pression de carburant sur la base des capteurs et signaux suivants :

•    Débitmètre massique d'air à film chaud
•    Capteur de température d'air d'admission
•    Capteur de pression de carburant haute pression
•    Transmetteur de pression et de température d'air de suralimentation
•    Capteur Hall arbre à cames
•    Capteur de température du liquide de refroidissement
•    Capteur de température d'air de suralimentation
•    Capteur de pression après filtre à air
•    Capteur de pédale d'accélérateur
•    Capteur de température de carburant
•    Capteur Hall de vilebrequin
•    Sonde lambda
•    Capteur de température avant filtre à particules diesel
•    Capteur de température avant turbocompresseur
•    Capteur de pression différentielle du filtre à particules diesel
•    Capteur de pression atmosphérique (intégré dans le calculateur CDI)

La régulation d'injection présente les sous-fonctions suivantes :

•    Préinjection
•    Injection principale
•    Post-injection

Préinjection

L'objectif de la préinjection est de réduire les bruits de combustion et les émissions de gaz d'échappement. Pour cela, du carburant est injecté jusqu'à 2 fois avant l'injection principale proprement dite. La combustion est alors plus souple.

Injection principale

L'injection principale sert à générer la puissance et le couple et est pilotée par le biais de la durée d'injection et du point d'injection.

Post-injection

La post-injection sert à augmenter la température des gaz d'échappement et en conséquence à assister la régénération du filtre à particules diesel et le processus de conversion des composants des gaz d'échappement dans le catalyseur à oxydation.


Système d'injection

regulation-d-injection.png

Schéma fonctionnel de la régulation d'injection

B2/5  Débitmètre d'air massique à film chaud
B4/32  Capteur de pression et de température air de suralimentation
B4/6  Capteur de pression de carburant haute pression
B6/1  Capteur Hall arbre à cames
B11/4  Capteur de température du liquide de refroidissement
B19/9  Capteur de température avant filtre à particules diesel
B19/11  Capteur de température avant turbocompresseur
B28/11  Capteur de pression après filtre à air
B37  Capteur de pédale d'accélérateur
B50  Capteur de température de carburant
B70  Capteur Hall de vilebrequin
G3/2  Sonde lambda
M16/6  Actionneur de papillon des gaz
N3/9  Calculateur CDI
Y76  Injecteurs de carburant
Y94  Vanne de régulation de débit

1  Capteur Hall arbre à cames, signal
2  Sonde lambda, signal
3  Capteur de température avant turbocompresseur, signal
4  Capteur de température avant filtre à particules diesel, signal
5  Injecteurs de carburant, commande
6  Capteur de pédale d'accélérateur, signal
7  Capteur de température du liquide de refroidissement, signal
8  Régime moteur, signal
9  Capteur de température d'air de suralimentation, signal
10  Température de carburant, signal
11  Actionneur de papillon des gaz, signal
12  Actionneur de papillon des gaz, commande
13  Vanne de régulation de débit, commande
14  Capteur de température d'air d'admission, signal
15  Capteur de pression après filtre à air, signal
16  Pression de carburant, signal

Recyclage des gaz d'échappement

recyclage.jpg

Recyclage des gaz d'échappement, représentation schématique

1 Refroidisseur d'air de suralimentation
50  Turbocompresseur
B2/5 Débitmètre d'air massique à film chaud
M16/6  Actionneur de papillon des gaz
M16/57  Actionneur de volet de gaz d'échappement
M55 Servomoteur coupure du canal d'admission
Y27/7  Actionneur de recyclage des gaz basse pression
Y27/8  Actionneur de recyclage des gaz haute pression
A  Air d'admission
B  Gaz d'échappement
C  Recyclage des gaz d'échappement haute pression
D  Recyclage des gaz d'échappement basse pression

Recyclage des gaz d'échappement – généralités

Le recyclage des gaz d'échappement abaisse la teneur en oxyde d'azote (NOx) dans les gaz d'échappement par les processus suivants :
•    Réduction de la concentration d'oxygène dans la chambre de combustion
•    Réduction de la température de combustion par réduction de la vitesse de combustion
•    Réduction de la température de combustion par la capacité calorifique supérieure des gaz d'échappement recyclés comparativement à l'air d'admission

Le recyclage des gaz d'échappement est actif du ralenti jusqu'à la plage de charge partielle supérieure. Le taux de recyclage dépend de diverses variables :
•    Charge du moteur et régime
•    Température de l'air d'admission et de l'air de suralimentation
•    Température des gaz d'échappement
•    Pression des gaz d'échappement
•    Limitation dans le temps

Circuit haute pression recyclage des gaz d'échappement

Après l'analyse des signaux d'entrée, le calculateur CDI pilote la valve de recyclage des gaz d'échappement haute pression en fonction d'une cartographie. Le taux de recyclage est régulé par le pilotage variable.

Circuit basse pression recyclage des gaz d'échappement

Le recyclage des gaz d'échappement basse pression est actif uniquement à une température du liquide de refroidissement supérieure à 60 °C et dans une plage allant du ralenti à la charge partielle médiane. Après l'analyse des signaux d'entrée, le calculateur CDI pilote l'actionneur de recyclage des gaz haute pression en fonction d'une cartographie.

Lorsque les taux de recyclage des gaz sont supérieurs, l'actionneur du volet de gaz d'échappement est en plus partiellement fermé si l'actionneur de recyclage des gaz basse pression est complètement ouvert. Le taux de recyclage est régulé par le pilotage variable. De plus, les gaz d'échappement nettoyés sont dirigés vers le refroidisseur de recyclage des gaz d'échappement, passent par l'actionneur de recyclage des gaz basse pression et arrivent au tube de formation du mélange dans la culasse.

Actionneur de recyclage des gaz haute pression

L'actionneur de recyclage des gaz haute pression est une vanne de commande qui peut être ouverte par un servomoteur électrique. Un capteur Hall détermine la position de la vanne de commande et la transmet sous la forme d'une valeur de tension. L'ouverture et la fermeture de l'actionneur de recyclage des gaz passe par une régulation de charge dans le calculateur CDI. En l'absence de courant, l'actionneur de recyclage des gaz est fermé.

L'actionneur de recyclage des gaz haute pression permet un recyclage direct des gaz entre le collecteur d'échappement et le collecteur d'admission du moteur, sans autre refroidissement ni nettoyage. En raison des fortes pressions des gaz d'échappement, on parle ici de recyclage des gaz d'échappement haute pression.


Valve de recyclage des gaz d'échappement basse pression

La valve de recyclage des gaz d'échappement basse pression est une valve à clapet qui peut être ouverte par un servomoteur électrique. Un capteur Hall détermine la position de la valve à clapet et la transmet sous la forme d'une valeur de tension. L'ouverture et la fermeture de la valve de recyclage
des gaz passe par une régulation de charge dans le calculateur CDI. En l'absence de courant, la valve de recyclage des gaz d'échappement est fermée.

Avec l'actionneur de recyclage des gaz basse pression, les gaz d'échappement sont prélevés en aval du filtre à particules diesel et l'air frais est envoyé en amont du turbocompresseur. Le prélèvement des gaz d'échappement se fait en aval du turbocompresseur avec des pressions d'échappement en conséquence faibles, ce qui explique pourquoi on parle ici de recyclage des gaz d'échappement basse pression.

Dans le recyclage des gaz d'échappement basse pression, la température des gaz d'échappement recyclés est abaissée par un refroidisseur de recyclage des gaz d'échappement refroidi par eau. Le recyclage des gaz d'échappement basse pression ne peut fonctionner correctement qu'en association avec le volet d'échappement.

recyclage-2.jpg

Recyclage des gaz d'échappement

1  Refroidisseur d'air de suralimentation
2  Refroidisseur de recyclage des gaz d'échappement (refroidi par eau)
M16/6  Actionneur de papillon des gaz
Y27/7  Actionneur de recyclage des gaz basse pression
Y27/8  Actionneur de recyclage des gaz haute pression
A  Air de suralimentation non refroidi
B  Air de suralimentation refroidi
C  Gaz d'échappement après filtre à particules diesel
D  Gaz d'échappement refroidis

schema-recyclage.jpeg

Schéma fonctionnel du recyclage des gaz d'échappement

B2/5  Débitmètre d'air massique à film chaud
B4/32  Capteur de pression et de température air de suralimentation
B11/4  Capteur de température du liquide de refroidissement
B16/10  Capteur de température recyclage des gaz d'échappement haute pression
B16/14  Capteur de température recyclage des gaz d'échappement basse pression
B19/7  Capteur de température avant catalyseur
B19/9  Capteur de température avant filtre à particules diesel
B19/11  Capteur de température avant turbocompresseur
B28/11  Capteur de pression après filtre à air
B37  Capteur de pédale d'accélérateur
B60  Capteur de pression des gaz d'échappement
B70  Capteur Hall de vilebrequin
M16/6  Actionneur de papillon des gaz
M16/57  Actionneur de volet de gaz d'échappement
N3/9  Calculateur CDI
Y27/7  Actionneur de recyclage des gaz basse pression
Y27/8  Actionneur de recyclage des gaz haute pression

1  Capteur de température recyclage des gaz d'échappement basse pression, signal
2  Capteur de température recyclage des gaz d'échappement haute pression, signal
3  Capteur de température avant turbocompresseur, signal
4  Capteur de température avant filtre à particules diesel, signal
5  Capteur de température avant catalyseur, signal
6  Capteur de pédale d'accélérateur, signal
7  Capteur de température du liquide de refroidissement, signal
8  Régime moteur, signal
9  Pression de suralimentation, signal
10  Capteur de pression des gaz d'échappement, signal
11  Actionneur de papillon des gaz, signal
12  Actionneur de papillon des gaz, commande
13  Actionneur de volet de gaz d'échappement, commande
14  Actionneur de volet de gaz d'échappement, signal
15  Charge du moteur, signal
16  Actionneur de recyclage des gaz basse pression, commande
17  Actionneur de recyclage des gaz haute pression, commande
18  Capteur de pression après filtre à air, signal


Dépollution des gaz d'échappement

Système SCR (AdBlue®) – généralités

SCR veut dire réduction catalytique sélective. Avec le système SCR, une solution d'urée aqueuse est injectée directement en amont du catalyseur SCR dans le système d'échappement. La réaction chimique ainsi provoquée (thermolyse et hydrolyse) réduit les oxydes d'azote dans les gaz d'échappement.

AdBlue®

AdBlue® est le nom commercial d'une solution aqueuse claire, synthétique, à 32,5 % d'urée ultra pure dans de l'eau déminéralisée.

Le système SCR comprend les composants suivants :

•    Vanne de dosage d'AdBlue®
•    Calculateur AdBlue®
•    Élément chauffant de la conduite de pression d'AdBlue®
•    Module d'alimentation d'AdBlue®
•    Module de réservoir d'AdBlue®
•    Réservoir d'AdBlue®
•    Tubulure de remplissage d'AdBlue®
•    Capteur de température du réservoir d'AdBlue®
•    Capteur de niveau d'AdBlue®
•    Élément chauffant du réservoir d'AdBlue®
•    Pompe de refoulement d'AdBlue®
•    Pompe d'aspiration d'AdBlue®
•    Calculateur capteur NOx après filtre à particules diesel
•    Capteur NOx après filtre à particules diesel
•    Calculateur capteur NOx après catalyseur SCR
•    Capteur NOx après catalyseur SCR
•    Capteur de température avant catalyseur SCR
•    Catalyseur SCR


Calculateur AdBlue®

Le calculateur AdBlue® pilote les fonctions suivantes par cartographie :
•    Refoulement d'AdBlue®
•    Injection du produit de réduction (débit et durée d'injection)
•    Antigel et retour du produit de réduction
•    Communication avec le calculateur CDI par le CAN capteur d'entraînement

Module d'alimentation d'AdBlue®

Le module d'alimentation d'AdBlue® a les tâches partielles suivantes :
•    Génération de la pression
•    Détection de la pression
•    Inversion de l'écoulement

Plusieurs composants sont intégrés dans le module d'alimentation d'AdBlue® :
•    Pompe de refoulement d'AdBlue®
•    Pompe d'aspiration d'AdBlue®
•    Élément chauffant du réservoir d'AdBlue®
•    Capteur de niveau d'AdBlue®

Pour générer la pression, le calculateur AdBlue® pilote en fonction d'une cartographie la pompe de refoulement d'AdBlue® intégrée au module d'alimentation d'AdBlue® à partir d'un signal par impulsions modulées en largeur.
La courbe de courant du signal par impulsions modulées en largeur permet au calculateur AdBlue® de déterminer la pression du système générée par la pompe de refoulement d'AdBlue®.

Dépollution des gaz d'échappement

À la coupure de la borne 15, la temporisation du calculateur AdBlue® démarre. Pendant la temporisation du calculateur, le produit de réduction AdBlue® restant est renvoyé de la conduite de pression d'AdBlue® et de la vanne de dosage d'AdBlue® en direction du réservoir d'AdBlue® par la pompe de refoulement d'AdBlue® par l'intermédiaire de la pompe d'aspiration d'AdBlue® pilotée par le calculateur AdBlue®.

Dans le même temps, la vanne de dosage d'AdBlue® s'ouvre de façon à ne générer aucun vide. La durée de la réaspiration est comprise entre 8 et 10 s, selon l'application du véhicule.

L'élément chauffant du réservoir d'AdBlue® permet de garantir que le produit de réduction liquide AdBlue® sera aspiré du réservoir d'AdBlue® même aux basses températures.
De plus, la conduite de pression d'AdBlue® est chauffée par l'élément chauffant de la conduite de pression d'AdBlue® en fonction d'une cartographie. Le retour du produit de réduction AdBlue® restant empêche la conduite de pression d'AdBlue® et le module d'alimentation d'AdBlue® de geler à environ –10 °C et d'être endommagé.

adBlue.jpg

Module d'alimentation d'AdBlue®

1  Connexion électrique 2  Raccord conduite d'AdBlue®

Calculateurs capteurs NOx

Les calculateurs capteurs NOx sont fournis par "VDO Automotive AG". Les capteurs NOx détectent la concentration de NOx et de O2 dans les gaz d'échappement en aval du filtre à particules diesel et du catalyseur SCR, et transmettent ces informations sous la forme de signal de tension à destination des calculateurs capteurs NOx. Ceux-ci traitent les informations et les envoient sur le CAN capteur d'entraînement à destination du calculateur CDI.

capteur-Nox.jpg

Calculateur capteur NOx après filtre à particules diesel

N37/7  Calculateur capteur NOx après filtre à particules diesel
N37/7b1 Capteur NOx après filtre à particules diesel


Vanne de dosage d'AdBlue®

La vanne de dosage d'AdBlue® injecte le produit de réduction (AdBlue®) dans la ligne d'échappement en amont du catalyseur SCR. Comme la vanne de dosage d'AdBlue® ne résiste pas à la pression du gel, le produit de réduction doit être aspiré de la vanne de dosage d'AdBlue® après l'arrêt du moteur.

Aux températures extérieures négatives et lorsque la ligne d'échappement est froide, la vanne de dosage d'AdBlue® est chauffée électriquement pour empêcher le gel de la vanne de dosage d'AdBlue® en roulant. Cette fonction se fait par une alimentation en courant de la bobine à l'intérieur de la vanne de dosage d'AdBlue®, au cours de laquelle le pointeau de la vanne ne s'ouvre pas.

vanne-de-dosage.jpg

Vanne de dosage d'AdBlue®

1  Connexion électrique
2  Entrée produit de réduction
3  Arrivée liquide de refroidissement
4  Retour liquide de refroidissement

depollution.png

Schéma fonctionnel de la dépollution des gaz d'échappement

A103/2  Module d'alimentation d'AdBlue®
B16/15  Capteur de température avant catalyseur SCR
B19/7  Capteur de température avant catalyseur
B19/9  Capteur de température avant filtre à particules diesel
B19/11  Capteur de température avant turbocompresseur
B28/8  Capteur de pression différentielle filtre à particules diesel
B37  Capteur de pédale d'accélérateur
B70  Capteur Hall de vilebrequin
G3/2  Sonde lambda avant catalyseur
M55  Servomoteur coupure du canal d'admission
N3/9  Calculateur CDI
N37/7  Calculateur capteur NOx après filtre à particules diesel
N37/8  Calculateur capteur NOx après catalyseur SCR
N118/5  Calculateur AdBlue®
Y76  Injecteurs de carburant
Y129  Vanne de dosage AdBlue®
CAN C1  CAN transmission

1  Sonde lambda, signal
2  Capteur de température avant turbocompresseur, signal
3  Capteur de température avant filtre à particules diesel, signal
4  Capteur de température avant catalyseur, signal
5  Capteur de température avant catalyseur SCR, signal
6  Capteur de pédale d'accélérateur, signal
7  Capteur de pression différentielle filtre à particules diesel, signal
8  Régime moteur, signal
9  Servomoteur coupure du canal d'admission, commande
10  Injecteurs de carburant, commande
11  Injection d'AdBlue®, demande
12  Chauffage capteur NOx, commande
13  Chauffage capteur NOx, commande
14  Vanne de dosage d'AdBlue®, commande
15  Niveau de remplissage d'AdBlue®, message
16  Injection d'AdBlue®, demande


Refroidissement et lubrification

Refroidissement du moteur

refroidissement-moteur.jpg

Circuit de liquide de refroidissement – représentation schématique

1  Vase d'expansion
2  OM626
3  Échangeur thermique de chauffage
4  Thermostat de liquide de refroidissement
5  Tubulure de sortie du liquide de refroidissement
6  Échangeur thermique d'huile moteur
7  Radiateur moteur
8  Pompe à liquide de refroidissement
9  Refroidisseur de recyclage des gaz d'échappement
M43/6  Pompe de circulation 1 circuit basse température
A  Liquide de refroidissement froid
B  Liquide de refroidissement chaud
C  Purge circuit de liquide de refroidissement

Refroidissement du moteur – généralités

Le refroidissement du moteur OM626 comprend les composants suivants :
•    Pompe à liquide de refroidissement
•    Radiateur moteur
•    Vase d'expansion
•    Échangeur thermique de chauffage
•    Échangeur thermique d'huile moteur
•    Thermostat de liquide de refroidissement
•    Refroidisseur de recyclage des gaz d'échappement
•    Vanne d'arrêt thermostat de liquide de refroidissement
•    Pompe auxiliaire liquide de refroidissement

Thermostat de liquide de refroidissement

Le thermostat de liquide de refroidissement est un thermostat à cire. Cette cire thermostatique se dilate à une température du liquide de refroidissement d'environ 85 °C et libère ainsi le circuit de liquide de refroidissement complet.

Circuit de liquide de refroidissement

Le refroidissement du moteur est assuré par un refroidissement à flux transversal. La particularité du moteur OM626 est que la culasse possède une double chemise humide.
Celle-ci permet d'envoyer le liquide de refroidissement directement de la pompe à liquide de refroidissement vers les composants soumis à une forte sollicitation thermique. Un refroidissement efficient et constant peut ainsi être garanti.

Refroidisseur de recyclage des gaz d'échappement

Pour le recyclage des gaz d'échappement basse pression, les gaz d'échappement sont prélevés après le filtre à particules diesel. Ces gaz d'échappement sont dirigés à travers le refroidisseur de recyclage des gaz d'échappement, refroidi par eau, est sont par conséquent refroidis. Les gaz d'échappement refroidis sont envoyés air de suralimentation dans l'air de suralimentation par l'actionneur de recyclage des gaz basse pression.

refroidisseur-recyclage.png

Tubulure de sortie du liquide de refroidissement

Une vanne d'arrêt est intégrée dans la tubulure de sortie du liquide de refroidissement. Celle-ci s'ouvre ou se ferme au moyen de la dépression à partir d'une température du liquide de refroidissement d'environ 80 °C. La commande de la dépression est assurée par le convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement.

tubulure-de-sortie.jpg

Convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement

Le convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement est une vanne électromagnétique à l'intérieur du circuit de liquide de refroidissement. Il reste fermé jusqu'à une température du liquide de refroidissement d'environ 80 °C. À une température du liquide de refroidissement d'environ 80 °C, le convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement est piloté et donc ouvert par le calculateur CDI.

convertisseur-de-pression.jpg

5  Tubulure de sortie du liquide de refroidissement
Y88  Convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement

gestion-thermique.jpg

Schéma fonctionnel de la gestion thermique

B2/5  Débitmètre d'air massique à film chaud
B11/4  Capteur de température du liquide de refroidissement
B19/9  Capteur de température avant filtre à particules diesel
B19/11  Capteur de température avant turbocompresseur
B37  Capteur de pédale d'accélérateur
B50  Capteur de température de carburant
B70  Capteur Hall de vilebrequin
M4/7  Moteur de ventilateur
M87  Servomoteur volet de radiateur
N3/9  Calculateur CDI
N127  Calculateur chaîne cinématique
Y76  Injecteurs de carburant
Y88  Convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement
CAN C1  CAN transmission


1  Capteur de température d'air d'admission, signal
2  Température des gaz d'échappement, signal
3  Température des gaz d'échappement, signal
4  Injecteurs de carburant, commande
5  Capteur de pédale d'accélérateur, signal
6  Capteur de température du liquide de refroidissement, signal
7  Régime moteur, signal
8  Température de carburant, signal
9  Convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement, commande
10  Vitesse de rotation de roue, signal
11  Température du liquide de refroidissement, signal
12   Moteur de ventilateur, demande (LIN) régime théorique
13  Moteur de ventilateur, statut (LIN)
14  Servomoteur volet de radiateur, commande (LIN)
15  Servomoteur volet de radiateur, statut (LIN)
16  Moteur tourne, signal

Refroidissement d'air de suralimentation


Refroidissement d'air de suralimentation – généralités

Le refroidisseur d'air de suralimentation refroidit l'air de suralimentation comprimé auparavant par le turbocompresseur et donc chauffé. L'air de suralimentation refroidi abaisse la température de combustion et donc aussi les émissions. Le taux de remplissage des cylindres augmente en conséquence et la pression de suralimentation peut être plus forte.

air-suralimentation.jpg

1  Refroidisseur d'air de suralimentation
2  Refroidisseur de recyclage des gaz d'échappement (refroidi par eau)
M16/6  Actionneur de papillon des gaz
Y27/7  Actionneur de recyclage des gaz basse pression
Y27/8  Actionneur de recyclage des gaz haute pression

A  Air de suralimentation non refroidi
B  Air de suralimentation refroidi
C  Gaz d'échappement après filtre à particules diesel
D  Gaz d'échappement refroidis

Lubrification du moteur

Pompe à huile moteur

Pour générer la pression d'huile, on utilise une pompe rotative à ailettes qui refoule l'huile en fonction des besoins à travers le circuit d'huile. La pompe à huile moteur bénéficie d'une régulation thermostatique et le volume de refoulement est réglable par le biais d'une bague de réglage à l'intérieur de la pompe à huile moteur.

pompe-huile_20160606-1617.jpg

Pompe à huile moteur

1  Carter
2  Bague déflectrice d'huile moteur
3  Rotor
4  Ressort antagoniste



Partie électrique et partie électronique

Gestion moteur

Calculateur CDI

Le moteur reçoit un tout nouveau calculateur CDI. Toute la fonctionnalité du moteur se trouve dans le calculateur CDI.
La gestion moteur reçoit directement les données des capteurs et indirectement sur le réseau CAN et commande les actionneurs correspondants.

Principales caractéristiques de la gestion moteur :
•    Commande des injecteurs de carburant
•    Commande de l'actionneur de papillon des gaz
•    Commande du recyclage des gaz d'échappement
•    Commande du couple

En fonction des signaux d'entrée,les systèmes suivants et fonctions sont commandés par le calculateur CDI et coordonnés :
•    Alimentation en carburant
•    Injection de carburant
•    Régulation du régime moteur
•    Coordination du couple
•    Fonction Start/Stop ECO
•    Suralimentation
•    Diagnostic embarqué
•    Mode dégradé du moteur
•    Recyclage des gaz d'échappement
•    Dépollution des gaz d'échappement
•    Gestion thermique
•    Préchauffage

gestion-electrique.png

Synoptique de la mise en réseau CAN

A1  Combiné d'instruments
A8/1  Clé-émetteur
A40/9  Unité de commande Audio/COMAND
A103/1b1  Capteur de température réservoir d'AdBlue®
A103/1b5  Capteur de niveau d'AdBlue®
A103/1r1  Élément chauffant réservoir d'AdBlue®
A103/2  Module d'alimentation d'AdBlue®
A103/2m1 Pompe d'alimentation d'AdBlue®
A103/2m2 Pompe d'aspiration d'AdBlue®
B4/1  Capteur de niveau réservoir de carburant indicateur de niveau de carburant, gauche
B4/2  Capteur de niveau réservoir de carburant indicateur de niveau de carburant, droit
B4/7  Capteur de pression de carburant
B64/1  Capteur de dépression de frein
CAN A  CAN télématique
CAN B  CAN habitacle
CAN C  CAN moteur
CAN C1  CAN transmission
CAN D  CAN diagnostic
CAN HMI  CAN interface utilisateur
CAN I  CAN capteur d'entraînement
Flex E  FlexRay train de roulement
G2  Alternateur
K27/7  Relais alimentation AdBlue®
LIN C1  LIN transmission
LIN C3  LIN chaîne cinématique


L6/1  Capteur de vitesse de rotation essieu avant gauche
L6/2  Capteur de vitesse de rotation essieu avant droit L6/3  Capteur de vitesse de rotation essieu arrière gauche
L6/4  Capteur de vitesse de rotation essieu arrière droit
M3  Pompe à carburant
M4/7  Moteur de ventilateur
M43/6  Pompe de circulation 1 circuit basse température
M87  Servomoteur volet de radiateur
N2/10  Calculateur système de retenue
N3/9  Calculateur CDI
N10/6  Calculateur SAM avant
N14/3  Étage final de préchauffage
N22/1  Calculateur climatisation
N30/4  Calculateur régulation du comportement dynamique
N37/7  Calculateur capteur NOx après filtre à particules diesel
N37/7b1  Capteur NOx après filtre à particules diesel
N37/8  Calculateur capteur NOx après catalyseur SCR
N37/8b1  Capteur NOx après catalyseur SCR
N51/3  Calculateur AIRMATIC (avec code (489) Airmatic (suspension pneumatique avec réglage de niveau et système d'amortissement adaptatif ADS))


N62/1  Calculateur capteurs radar (avec code (233) DISTRONIC PLUS, code (237) Avertisseur d'angle mort actif, code (238) Aide active au stationnement)
N69/1  Calculateur porte avant gauche
N73  Calculateur contacteur antivol électronique
N80  Calculateur module de jupe de direction
N118  Calculateur pompe à carburant
N118/5 Calculateur AdBlue®
N127  Calculateur chaîne cinématique
R7/1  Élément chauffant conduite de pression d'AdBlue®
R9  Bougies de préchauffage
S9/1  Contacteur de feux stop
X11/4  Prise de diagnostic
Y3/8n4  Calculateur commande de boîte de vitesses entièrement intégrée
Y129  Vanne de dosage AdBlue®


gestion-electrique-2.png

Synoptique de la mise en réseau directe

B2/5  Débitmètre d'air massique à film chaud
B2/5b1  Capteur de température d'air d'admission
B4/6  Capteur de pression de carburant haute pression
B4/32  Capteur de pression et de température air de suralimentation
B6/1  Capteur Hall arbre à cames
B11/4  Capteur de température du liquide de refroidissement
B16/10  Capteur de température recyclage des gaz d'échappement haute pression
B16/14  Capteur de température recyclage des gaz d'échappement basse pression
B16/15  Capteur de température avant catalyseur SCR
B19/7  Capteur de température avant catalyseur
B19/9  Capteur de température avant filtre à particules diesel
B19/11  Capteur de température avant turbocompresseur
B28/8  Capteur de pression différentielle filtre à particules diesel
B28/11  Capteur de pression après filtre à air
B37  Capteur de pédale d'accélérateur
B40/4  Capteur de pression d'huile
B50  Capteur de température de carburant
B60  Capteur de pression des gaz d'échappement
B70  Capteur Hall de vilebrequin


G3/2  Sonde lambda avant catalyseur
G3/2b1  Élément capteur sonde lambda avant catalyseur
G3/2r1  Chauffage sonde lambda avant catalyseur


K40/8kH  Relais borne 50 démarreur
K40/8kG  Relais borne 15 compartiment moteur
K40/8kN  Relais borne 87M


M1  Démarreur
M4/7  Moteur de ventilateur
M16/6  Actionneur de papillon des gaz
M16/57  Actionneur de volet de gaz d'échappement
M55  Servomoteur coupure du canal d'admission


N3/9  Calculateur CDI


R39/1  Élément chauffant conduite de purge
R54/1  Élément chauffant filtre à carburant


S40/3  Contacteur pédale d'embrayage
S43  Contacteur de contrôle du niveau d'huile
S43/1  Manocontacteur d'huile


Y27/7  Actionneur de recyclage des gaz basse pression
Y27/8  Actionneur de recyclage des gaz haute pression
Y31/5  Convertisseur de pression régulation de pression de suralimentation
Y76/1  Injecteur de carburant cylindre 1
Y76/2  Injecteur de carburant cylindre 2
Y76/3  Injecteur de carburant cylindre 3
Y76/4  Injecteur de carburant cylindre 4
Y88  Convertisseur de pression vanne d'arrêt thermostat de liquide de refroidissement
Y94  Vanne de régulation de débit

Abréviations

CAN: Controller Area Network
CDI: Injection diesel common rail
DPF: Filtre à particules diesel
EKAS: Coupure du canal d'admission
EURO 6: Norme de pollution Euro 6
LIN: Réseau local d'interconnexion
NOx: Oxyde d'azote
PWM: Impulsions modulées en largeur
SCR: Réduction catalytique sélective
VTG: Turbine à géométrie variable


forum-mercedes-2.png
          - Important - Aucun support technique ne sera apporté par MP, inutile d'essayer - Important -

Hors Ligne

Annonce

#2 07-06-2016 09:53:30

DaddyKool
Admin
Inscription : 11-02-2012
Messages : 4 814
Site Web

Re : Le moteur OM626 4 cylindres 1.6L

Superbe sujet sur le moteur 1.6L d'origine Renault qui équipe de nombreux modèles de la gamme MB, ça va intéresser beaucoup de monde sur le forum, merci à toi! C'est épinglé smile


Forum-mercedes.com

Hors Ligne

Annonce

Sujets similaires

Pied de page des forums




Server Stats - [ Generated in 0.039 seconds ]   [ 2012 - 2016 Forum-mercedes.com ]  [ Design by Yuni ]